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Abstract

Background: A growing number of crystal and NMR structures reveals a considerable structural polymorphism of
DNA architecture going well beyond the usual image of a double helical molecule. DNA is highly variable with
dinucleotide steps exhibiting a substantial flexibility in a sequence-dependent manner. An analysis of the
conformational space of the DNA backbone and the enhancement of our understanding of the conformational
dependencies in DNA are therefore important for full comprehension of DNA structural polymorphism.

Results: A detailed classification of local DNA conformations based on the technique of Fourier averaging was
published in our previous work. However, this procedure requires a considerable amount of manual work. To
overcome this limitation we developed an automatic classification method consisting of the combination of
supervised and unsupervised approaches. A proposed workflow is composed of k-NN method followed by a non-
hierarchical single-pass clustering algorithm. We applied this workflow to analyze 816 X-ray and 664 NMR DNA
structures released till February 2013. We identified and annotated six new conformers, and we assigned four of
these conformers to two structurally important DNA families: guanine quadruplexes and Holliday (four-way)
junctions. We also compared populations of the assigned conformers in the dataset of X-ray and NMR structures.

Conclusions: In the present work we developed a machine learning workflow for the automatic classification of
dinucleotide conformations. Dinucleotides with unassigned conformations can be either classified into one of
already known 24 classes or they can be flagged as unclassifiable. The proposed machine learning workflow
permits identification of new classes among so far unclassifiable data, and we identified and annotated six new
conformations in the X-ray structures released since our previous analysis. The results illustrate the utility of machine
learning approaches in the classification of local DNA conformations.

Keywords: DNA, Dinucleotide conformation, Classification, Machine learning, Neural network, RBF, MLP, k-NN,
Regularized regression, Cluster analysis
Background
The antiparallel double helical structure of DNA and its
self-recognition form the basis for the conservation and
the transfer of genetic information. The model of the
“canonical”B-DNA form proposed by Watson and Crick
[1] has later been enriched by detailed structural data
from single-crystal structures of the biologically pre-
vailing B-form [2] and of its kin right-handed A-form
[3,4]. In addition, the first DNA single crystal [5] re-
vealed atomic details of a third major form of a DNA
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double helix, left-handed Z-DNA. The atomic resolution
structures of B-DNA duplexes [6] revealed the existence of
sequence-dependent structural deviations which provide
the required specificity for DNA recognition by proteins
and drugs [7]. The association of DNA with proteins is
known to induce a local deformation of the B-form toward
the A-form [8-13] in various protein-DNA complexes such
as, e.g. high mobility group (HMG) proteins [14], trp re-
pressor/operator complex [15], TATA box binding protein
[16-18], HIV-1 reverse transcriptase [19], various DNA
polymerases [20-23], zinc finger protein [24], hyperthermo-
phile Sac7d protein [25], and EcoRV endonuclease [26-28].
Along the transition pathway between the B- and A-forms
[29] various intermediate B-to-A conformations were iden-
tified [9,30-32]. The importance of conformational sub-
d. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly cited.
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states of the DNA backbone for protein binding to the
minor groove was suggested by several analyses [13,33,34].
Besides the A-, B- and Z-forms, DNA can also adopt other
biologically relevant structures, such as single-stranded
hairpins [35], triple helices [36], three- and four-way junc-
tions [37,38], four-stranded G-quadruplexes [39] or parallel
helices [40]. Their existence indicates that DNA structure
is much more polymorphic than it might be deduced from
the misleading simplicity of the canonical B-DNA duplex.
The base morphology in a DNA double helix is com-

monly described [12,41-46] by parameters giving mutual
position between bases in a base-pair (e.g., propeller
twist or stagger) and in a base-step (e.g. rise or twist)
[47]. The same parameters can also be used for other
unusual DNA structures such as triple helices [48-50],
G-quadruplexes [51] or three- and four-way junctions
[52,53]. In addition, for the last two groups of structures
additional specific parameters such as the G-quartet pla-
narity [54] or the angle between the junction arms [55]
were also defined. Another set of quantitative measures
that can be used to characterize secondary structure of
DNA are backbone torsional angles α, β, γ, δ, ε, ζ to-
gether with the glycosidic torsion χ [56]. Though the re-
lationship between the phosphodiester backbone states
and local distortions of DNA double helix was described
in the '80 and '90s [57,58], the backbone was regarded as
a passive link holding bases at their positions in several
early analyses [7,59,60]. However, nowadays it is clear
that the backbone must be considered as an active dy-
namic element while defining the conformational prop-
erties of double-helical DNA [34,61-69]. The main role
of the backbone is in restricting the conformational
space available for the placement of bases, and in steric
coupling of the adjacent base steps [61]. An overall con-
formational flexibility of DNA thus results from the
interplay between the optimal base positions and the
preferred conformations of the sugar-phosphate back-
bone. An increasing number and quality of DNA struc-
tures led to several detailed analyses of the conformational
space of the DNA backbone, most of these studies have
been based on crystal structures [32,70-73] but structures
determined by various solution-based techniques of NMR
spectroscopy have also contributed significantly to our un-
derstanding of biology of nucleic acids [74-76]. NMR
methods were successfully applied to study a dynamics of
DNA phosphodiester backbone in solution [77-82], NMR
studies also provide evidence for the BII states in solution
and help to unravel a role of the phosphorus atom in a BI-
BII transition [68,83-87].
To uncover a potential role of the sugar-phosphate

backbone in the DNA structural polymorphism we have
analyzed a set of carefully selected double-helical struc-
tures of naked and protein bound DNA resolved at high
resolution (≤1.9 Å) [32]. We have identified all the
known major conformers (AI, AII, BI, BII, and ZI and
ZII) as well as several minor conformations correspond-
ing to various transitional states between the B and A
forms. The investigation was based on the technique of
Fourier averaging in combination with a cluster analysis
applied previously on the annotation of RNA conformers
[88]. The main disadvantage of the Fourier averaging ap-
proach is that it requires a considerable amount of man-
ual work [32]. To automate this process we introduce
here a machine learning workflow that deals with two
following tasks:

1. Classify data points into one of the existing classes.
2. Recognize data points that cannot be classified and

identify new possible conformational classes.

The first task is accomplished by the application of the
supervised machine learning approaches. In supervised
algorithms a classification function is inferred from the
labeled training data (i.e. each data point must be
assigned to an appropriate class). As a training set we
used previously published classification of DNA local
conformers [32]. In the present study we applied and
compared several supervised methods: multi-layer per-
ceptron (MLP) neural network, radial basis function
(RBF) neural network, k nearest neighbors (k-NN), and
ridge regression (RR). The best method (k-NN) not only
achieves high classification accuracy, but also allows
identifying conformers that cannot be assigned to any of
the known classes. Such conformers were subsequently
investigated for the presence of new clusters using a
modified clustering method based on a leader algorithm
[89]. The proposed classification workflow (Figure 1)
was applied on the analysis of X-ray data updated by
structures released after 18 July 2005, and of NMR data
released until 15 February 2013.

Methods
Data sets
For the development of the machine learning workflow
we used a previousy published data set [32] consisting of
7,739 dinucleotides collected from 389 high quality crys-
tal structures with a resolution of 1.9 Å or better and from
58 structures with unusual topologies (G-quadruplexes,
i-motif, three- and four-way junctions, etc.). These
structures were released into the Nucleic Acid Database
[90] before 19 July 2005. In this data set we originally
identified 119 conformational families. To reduce their
number for the classification purposes, we critically
evaluated the data for the presence of outliers and for
the size and quality of the clusters. 419 outliers were
removed, and the number of conformationally distinct
families was condensed into 18 classes (Table 1)
resulting in a data set consisting of 7,320 data points.



Figure 1 A workflow of the classification of local DNA conformations. k-NN uses 11 neighbors (parameter k). A threshold vcrit = 0.001 (see
explanation in the Methods section of the manuscript) was used to distinguish between data points that can be assigned to some of existing
classes or cannot be assigned at all. Cluster analysis uses a modified version of the single-pass nonhierarchical leader algorithm [89].
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These data were split into 4,567 dinucleotide units
(DatasetF) classified previously by the Fourier cluster-
ing, and into 2,753 dinucleotides that were not
assigned to any class in our previous work [32]. A
stratified sampling was used to divide the DatasetF
into the training (DatasetF_train, see Additional file 1)
and test (DatasetF_test, see Additional file 1) sets in
the ratio 80:20. DatasetF_train was used for classifier’s
learning, and the DatasetF_test was used for assessing
its performance. Training set contains 3,651 data
points, and test set contains 906 data points. In a
Table 1 Characteristics of the local B-DNA backbone conform

Class ID Description N δ

8 A-DNA 325 83

13 A-DNA, BI-like χ, χ +1 196 89

19 A-DNA, α+1/γ+1 crank (t/t) 65 82

32 BI-to-A, O4'-endo δ+1 266 129

41 A-to-B, >C3'-endo δ, C2'-endo δ+1 215 90

50 BI, C1'-exo δ+1 392 129

54 BI 1942 136

86 BII variation in complexes 314 140

96 BII 539 143

109 BII-to-A, C3'-endo δ+1 20 142

110 BII-to-A, α+1/γ+1 crank (g+/t), high β+1 9 146

116 BI, α+1/γ+1 crank (g+/g-) 158 140

119 BI mismatches, syn/anti 11 144

121 A-to-B, >C3'-endo δ, anti/syn 19 100

122 BI mismatches, anti/syn, α+1/γ+1 crank (g+/g-) 8 137

123 Z-DNA, Y-R 21 147

124 Z-DNA, R-Y ZI 49 96

126 Z-DNA, R-Y ZII 18 95

“Class ID” is the symbolic label of the class. “Description ”is a short annotation of th
membership. Values of torsions represent the arithmetic means for individual classe
stratified division each of the classes is sampled with
the ratio present in the total population. For example,
class number 54 (BI-DNA, see Table 1) covers 42.5% of
the total population, and is present in this proportion
also in DatasetF_train and in DatasetF_test.
Our machine learning classification workflow was then

applied to 427 X-ray structures, resolved with a crystallo-
graphic resolution of 1.9 Å or better, and released between
18 July 2005 and 15 February 2013, which contained 8,708
dinucleotides, and to 664 NMR structures released before
15 February 2013, which contained 12,300 dinucleotides.
ations used in the present work

ε ζ α + 1 β + 1 γ + 1 δ + 1 χ χ + 1

205 287 294 174 54 83 199 202

201 275 294 162 54 89 244 244

195 291 149 194 182 87 204 188

186 264 295 170 52 99 247 233

196 280 299 179 55 142 222 256

181 265 300 177 50 123 246 245

183 259 303 181 44 138 252 259

201 216 314 153 46 140 262 253

245 170 297 141 46 141 271 257

213 181 297 139 52 90 273 207

257 186 60 224 196 90 260 200

194 247 31 197 294 150 253 253

189 266 303 167 53 138 70 259

209 278 295 174 54 128 243 67

196 225 33 187 295 145 257 70

264 76 66 186 179 95 205 61

242 295 209 231 55 144 63 205

187 63 169 162 44 144 58 213

e class. “N” is the number of suites (dinucleotides) with the given class
s. Torsions are defined in Figure 2.
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For our analysis a concept of a “suite” [91] was adopted.
“Suite” is a conformational subset of a dinucleotide unit
(Figure 2) going from sugar to sugar and consisting of 7
backbone torsions (δ, ε, ζ, α + 1, β + 1, γ + 1, δ + 1). The
analysis also includes two glycosidic angles χ and χ + 1.
Each data point is therefore represented by a vector com-
posed of 9 torsion angles. In the following text we also use
the convention [56] by which it is common to describe
the backbone torsional angles of ~ 60° as gauche+ (g+),
of ~ 300° as gauche- (g-), and of ~ 180° as trans (t). For
glycosidic torsion χ following regions are commonly used:
syn (0° – 90°), anti (240° – 180°), and low anti (~ 200°).

Data preprocessing
The input data (raw angle values from the 0° – 360°
interval) were used either directly (in k-NN method) or
they were normalized using one of the following
methods:

1. In a geometric preprocessing each torsion was
transformed from the space of dihedral angle θ ∈ {δ,
ε, ζ, α + 1, β + 1, γ + 1, δ + 1, χ, χ + 1} to the linear
metric coordinate space built up by the series of
trigonometric functions {sin nθ, cos nθ} with the
geometric order parameter n = 1, …, D. This
preprocessing method accounts for the circular
character of angular data [92,93], however it
increases the length of the input vector from 9 to
Figure 2 Two repeating units in a DNA dinucleotide chain. One
residue (nucleotide) is defined from phosphate to phosphate.
Conformation of each residue is given by six backbone torsion
angles α, …, ζ, and by the glycosidic torsion angle χ. “Suite” goes
from δ to δ+1 angles consisting from the following torsions: δ, ε, ζ,
α+1, β+1, γ+1, δ+1.
2D × 9. This preprocessing was used in RR, MLP
and RBF methods.

2. In a linear preprocessing each angle was converted
into the 〈 − 1, 1〉 range. This conversion increases the
performance in the Matlab environment that was
used for all neural networks simulations. This
preprocessing was used in MLP and RBF methods.

Depending on the classification method, the output
data (i.e., the class membership of individual data points)
were encoded in two different ways:

1. The original class numbering (see Table 1) was used
in k-NN.

2. Classes were renumbered to the interval 1-18, and
the class membership was then encoded as a binary
vector of the length 18. This encoding was used in
RR, MLP and RBF methods.

Training and cross-validation
Each classifier is characterized by one or more parame-
ters that are tuned to capture the underlying relation-
ships in the training data set, and that influence the
ability of an algorithm to perform accurately on new,
previously unseen examples (the generalization ability).
The combination of one particular method (e.g. MLP
neural network) with particular values of parameters
(e.g. number of hidden neurons equaling to 10) is des-
ignated as a model. The most appropriate values of the
parameters were chosen using a well established
method of k-fold cross-validation. In k-fold cross-
validation, a training set is divided into k parts. A clas-
sifier is trained k-times, each time leaving out one of
the subsets (the so-called validation set), which is used
to assess the classifier’s performance. At the end, the
final validation error is obtained as the average of all
errors from k individual validation runs. In the present
work a 10-fold cross-validation was adopted using the
stratified division of the DatasetF_train. The quality of
the trained model was evaluated by the Mean Squared
Error of Validation MSEvalidation.

MSEvalidation ¼1
n Σ

n
i¼1 Pi−Tið Þ2 ð1Þ

where Pi is the predicted class membership and Ti is
the known class membership. To smooth out possible
biases caused by an unfavourable random data set div-
ision, the 10-fold cross-validation was repeated 10
times, and the final MSEvalidation was obtained as an
average of validation errors from all individual runs. A
model with the lowest MSEvalidation represents the
“best” model. Once it was identified the final model
was trained using the whole DatasetF_train. The
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quality of individual classifiers was compared using the
MSEtest calculated for the DatasetF_test.

Classifiers
A multi-layer perceptron (MLP)
MLP represents the most common architecture of
neural networks. It consists of simple processing units
(neurons) arranged into three or more layers: one input
layer, one or more hidden layers, and one output layer.
Every neuron in one layer is connected to every neuron
in the following layer, and no intra-layer connections
exist. The strength of neuron connections is represented
by numerical weight values. The weights are free vari-
ables of the system which are determined during the
training phase. Neurons transform a numerical input to
an output value via the transfer function. In the present
work, a two-layer perceptron consisting of one input,
one hidden and one output layer was used. Several
transfer functions were tested: linear, log-sigmoid and
tan-sigmoid. Log-sigmoid function is given as

logsig uð Þ ¼ 1
1þ e−u

ð2Þ

and tan-sigmoid function is given as

tansig uð Þ ¼ e2u−1
e2u þ 1

ð3Þ

where a potential μ of a neuron is given as u ¼ ∑i wixi−ϑ ,
�x ¼ x1;…; xi½ � is the input vector, �w ¼ w1;…;wi½ � is the
weight vector, and ϑ is the neuron’s bias (threshold). As
the neuron’s input goes from negative to positive infinity,
the log-sigmoid function generates outputs between 0 and
1, and the tan-sigmoid function generates outputs be-
tween -1 and 1.

Radial basis function network (RBF)
RBF is also a two-layer neural network. The input layer
serves only as a mediator in passing a signal to the hid-
den layer. While MLP is based on units which compute
a non-linear function of the scalar product of the input
vector and a weight vector, in RBF the activation of a
hidden unit is determined by the distance between the
input vector and a prototype vector. Each hidden neuron
modulates the input signal by the Gaussian transfer
function called radial basis function (RBF). Each RBF is
characterized by two parameters: by its center (position)
representing the prototype vector, and by its radius
(spread). The centers and spreads are determined by the
training process. When presented with the input vector
�x , the Euclidean distance of the input from the neuron’s
center is computed by the hidden neuron, and the RBF
kernel function is applied to this distance. The output
from the network is constructed as a weighted sum of
the RBF’s outputs. The weights are also determined in
the training phase. While MLP separate the classes by
using hidden neurons which form hyperplanes in the in-
put space yielding a global approximation, RBF networks
model the separate class distributions by local radial
basis functions.

k-nearest neighbor (k-NN)
In k-NN method objects are classified based on the class
of their nearest neighbors. A new point is assigned to
the majority class among the k nearest points. k-NN is a
lazy algorithm meaning that there is no explicit training
phase, it makes no generalization (i.e. no underlying
model of the class membership is constructed), and the
decision is based on the entire training data set which
must be available during the prediction phase. Euclidean
distance is used as a measure of the proximity of two
data points. To get the Euclidean distance between two
torsion angle vectors the similarity vector �s must be cal-
culated first. Its elements si are distances between indi-
vidual components of compared vectors. To correctly
calculate the similarity vector �s the circularity of the an-
gular data must be taken into account. The distance si
between two angles ϕ and ψ is given as [94]

si ¼ 180− 180−j jϕ−ψjj ð4Þ
where both ϕ and ψ angles are given in degrees. The Eu-
clidean distance d is calculated as

d ¼
ffiffiffiffiffiffiffiffi
∑
i
s2i

q
ð5Þ

In k-NN approach, the number of nearest neighbors k
represents the only adjustable parameter of the method.
The class membership of k nearest neighbors was used
to assign the class of the classified point. To take into
account a fact that near neighbors influence the
resulting class membership more than the distant ones
contributions of the neighbors were weighted by 1/d2.
The point was assigned to the class with the highest
sum of weighted contributions. However, if this sum was
less than a threshold vcrit = 0.001, the data point was de-
clared as unclassified. The value of vcrit was obtained
empirically and, based on our experience, optimally bal-
ances the accuracy of the method and the number of un-
assigned points in the dataset.

Regularized regression (RR)
RR [95] is a standard statistical method of linear model-
ing and parameter identification. In RR pattern set is
represented as a pair (X, Y*), where X is an input matrix
of the size m × n, Y* is an output matrix of a size m × N,
m is the number patterns, n is the number of inputs and
N is the number of outputs. Ridge regression penalizes
the size of the regression coefficients by the penalty



Čech et al. BMC Bioinformatics 2013, 14:205 Page 6 of 14
http://www.biomedcentral.com/1471-2105/14/205
calculated as a weight matrix W = (XT X + λI)-1 XTY*

where λ ≥ 0 is a regularization parameter and I is an n ×
n identity matrix. If the matrix Y* represents the class
membership, the RR response is calculated as Y = XW
and the ith pattern is assigned to the jth class for which
the yi,j element is maximal. Main advantages of RR are
fast learning procedure and ability to solve ill-posed
problems with a high number of possibly dependent ex-
planatory variables. The disadvantage of RR is the linear-
ity of the underlying model. However, the linearity
limitation can be suppressed by an appropriate nonlinear
preprocessing of the data.

Comparing classifiers
The quality of classification models is assessed by vari-
ous measures based on the counts of correctly and in-
correctly predicted test data [96]. Such information can
be tabulated as a confusion matrix. Each row of the
matrix represents the instances in the actual class, and
each column represents the instances in the predicted
class. To compare the performance of various classifica-
tion models this matrix is usually boiled down to the
single number. In the present work two such perform-
ance metrics – accuracy and κ coefficient – were uti-
lized. Accuracy is defined as a percentage of correctly
classified data points, i.e. the main diagonal in the confu-
sion matrix is summed (this gives the number of cor-
rectly classified data points – true positives TP) and the
sum is divided by the total number of observations N:

accuracy ¼ TP
N

•100 ð6Þ

The disadvantage of the accuracy is that it does not re-
veal if an error is evenly distributed between classes or if
some classes are really bad and some really good. To in-
clude this information the κ coefficient [97] takes into
account also the off-diagonal elements

κ ¼ N� ∑n
i¼1xii−∑

n
i¼1 xiþ � xþið Þ

N2−∑N
i¼1 xiþ � xþið Þ ð7Þ

where n is the number of rows in the confusion matrix,
xii is the number of observations in row i and column i,
xi+ and x+i are the marginal totals of row i and column i,
respectively, and N is the total number of observations.
κ coefficient measures the improvement of classifier’s
predictions over a purely random assignment to classes.

Cluster analysis
The main objective of clustering is to find a grouping of
similar objects within a data [98]. The objects are not la-
beled, and cluster analysis belongs between unsupervised
methods. In the present work we used a nonhierarchical
single-pass method that works on the basis of a single
scan of the data set. The most common single-pass algo-
rithm is called the leader algorithm [89] which is simple
to implement and very fast. However, its major draw-
back is that it is order dependent meaning that if the
compounds are rearranged in a different order then the
resulting clusters can be different [89]. Therefore we de-
veloped a modified leader algorithm which retains high
speed, and is order independent. The used algorithm
consists of the following steps to provide a set of
clusters:

1. Set the number of existing clusters to zero.

2. For each data point (i.e., set of nine torsions
characterizing a given dinucleotide) Di
� Start new cluster Ci

� Calculate a neighborhood of Di

� Go through all data points except Di. Data
points belonging to the neighborhood of Di are
appended to the cluster Ci
3. Remove duplicated clusters getting a set of unique
clusters (a unique set).

4. Repeat until the unique set is empty

� Identify the biggest cluster Bi in the unique set
� If the size of Bi is higher than predefined

threshold append Bi to the final set of clusters
� Identify all clusters that overlap with Bi
� Remove Bi and all overlapping clusters from the

unique set
In point 2. a dinucleotide belongs to the neighborhood
of Di if its torsion deviates from Di by no more than 20°
for α, ε, ζ, and χ, 30° for β, 15° for γ, and 10° for δ. These
intervals were selected on the empirical basis reflecting
common conformational variability (“stiffness”) of the
individual torsion angles. A cluster is defined by at least
six points in the presented study, which gives a value of
a threshold in point 4.

Results and discussion
Optimal parameters of the classification methods
In MLP, we determined the input preprocessing method,
the number of hidden neurons and the type of transfer
function by the 10-fold cross-validation. The number of
hidden neurons varied between 10 and 60 with the step
of 2. We performed the cross-validation with every pos-
sible combination of linear, log-sigmoid and tan-sigmoid
transfer functions using either linear or geometric pre-
processing. The order parameter n of the geometric pre-
processing was cross-validated, its values varied from 1
to 10 by one. The optimal MLP model uses the geomet-
ric preprocessing with n = 1 (i.e. the input vector
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consists of 2 × = 18 components), has 22 neurons in a
hidden layer, and uses log-sigmoid (Equation 2) transfer
function at hidden neurons and tan-sigmoid (Equation 3)
transfer function at output neurons.
In RBF, the input preprocessing method, the number

of hidden neurons and the optimum spread of the
Gaussians on hidden neurons were recognized using the
10-fold cross-validation. The order parameter n of the
geometric preprocessing varied from 1 to 10 by one, the
spread varied in the interval of 0.05 and 0.025 with the
step of 0.01, and the number of hidden neurons varied
by one between 10 and 50. The optimal RBF utilizes a
geometric preprocessing with n = 1 and has 18 hidden
neurons with the spread of 0.15.
In k-NN, the number of nearest neighbours k was var-

ied between 1 and 50. Its optimum value found by 10-
fold cross-validation is equal to 11.
In RR, 10-fold cross-validation was used to set the

order k of the geometric preprocessing and the
regularization parameter λ. The order k was varied be-
tween 1 and 10 by one, and the regularization parameter
λ was set either to 0 or it was altered by factors of 10
from 10-6 to 10-3. The optimum order of the geometric
preprocessing is 6 which leads to the increase of the
length of the input vector from 9 to 2×6×9 = 108. The
optimum regularization parameter λ is zero. With this
regularization parameter the ridge regression is equiva-
lent to the standard linear regression.
Performance of the classification methods
The accuracy of individual classification methods is
summarized in the Table 2 and the confusion matrices
showing the class predictions given by individual classi-
fiers are available in the Additional file 2.
The best performing classifier both in terms of accur-

acy and κ coefficient is the multi-layer perceptron MLP
followed by the k-nearest neighbors k-NN and by the
ridge regression RR. MLP and k-NN are both non-linear
Table 2 Quality measures (accuracy and κ coefficient) of
multi-layer perceptron MLP, radial basis function
network RBF, k nearest neighbors k-NN and ridge
regression RR

MLP RBF k-NN RR

accuracy [%] 97,35 88,41 96,58 94,92

κ coefficient 0,966 0,845 0,956 0,934

These were evaluated using test set (DatasetF_test). The MLP model uses
geometric preprocessing with the order k = 1, has 22 hidden neurons with the
log-sigmoid transfer function and output neurons use the tan-sigmoid transfer
function. The best RBF model uses geometric preprocessing with the order
k = 1, has 18 hidden neurons with the spread of 0.15. The optimal value of
k in k-NN is 11. In RR, the optimal regularization parameter λ is zero, and the
order of the geometric preprocessing expansion k is 6.
classifiers, while RR represents a linear method. The
penalization of the coefficients in the ridge regression is
not necessary (regularization parameter λ is zero), and
the ridge regression is therefore reduced to the standard
linear regression. However, RR performs similarly to
nonlinear methods due to the sophisticated preprocess-
ing method motivated by the geometrical nature of the
input angular data. A careful inspection of the confusion
matrices (Additional file 2) reveals that the decrease in
accuracy is caused mainly by misassignment between
two pairs of classes: points belonging to the class 50 (BI
conformers with the second sugar at the C1‘-exo con-
formation, see Table 1) can be assigned to the class 54
(BI conformers, see Table 1), and points belonging to the
class 32 (BI-to-A conformers with the second sugar at
the O4′-endo conformation, see Table 1) can be assigned
to the class 50. Classes 54 and 50 are distinguished
mainly by a slight difference in the sugar pucker at both
deoxyriboses (7° in δ and 15° in δ + 1, see Table 1), the
conformational transition between these classes is con-
tinuous and a limited blending of the conformers can be
expected. Similar behavior show also classes 50 and 32
as they differ primarily in the δ + 1 torsion, the differ-
ence is 24° (see Table 1).
A poor performance of RBF comes as a surprise. Rea-

son for this behavior can be that the classification
boundary in RBF is constructed in a local manner, while
MLP and RR are global methods and in k-NN the classi-
fication boundary is not constructed explicitly. However,
an RBF confusion matrix (Additional file 2) reveals that
the decrease in accuracy is also caused by misassignments
between classes 50 and 51 (51 misassigned points) and be-
tween classes 32 and 50 (15 misassigned points). As
explained above, certain extent of the mixing of these con-
formers can be expected, and we can thus conclude that a
lower accuracy of the RBF network is only seeming and
RBF performs similarly as the other investigated methods.
Of the studied methods, k-NN offers one important

advantage: it allows to discriminate between conforma-
tions that can be assigned to one of the pre-defined clas-
ses and between the conformations for which such a
class does not exist. From this reason we propose k-NN
as a method of choice for the classification of local con-
formations in nucleic acids.

Analysis of the newly characterized conformers
X-ray structures
We analyzed 2,753 dinucleotides unassigned to any class
in our previous work [32], and 8,708 dinucleotides from
427 X-ray structures released between 18 July 2005 and 15
February 2013. Utilizing the k-NN approach (with k = 11
and vcrit = 0.001) we assigned 10,510 (91%) dinucleotides
to one of 18 possible (Table 1) classes. Applying a cluster-
ing procedure on remaining 951 unassigned dinucleotides
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representing results of incorrect refinement of the crystal-
lographic model or yet unidentified clusters we identified
6 new conformational classes (Table 3). A data set
containing all X-ray structures analyzed in the present
work can be found in Additional file 1.
Four of six new conformers can be found exclusively

in two functionally distinct types of non-double helical
structures. Conformer 115 occurs in four-way (Holliday)
junctions, and conformers 97, 113, and 114 are found in
guanine quadruplexes of the Oxytricha nova telomere.
Other two conformers (117 and 35) are found in various
DNA-protein complexes. A detailed description of new
conformations is given in the following paragraphs.
Conformations 97, 113 and 114
These conformations are found exclusively in guanine
quadruplexes (G-quadruplexes) of the O. nova telomere.
G-quadruplexes represent biologically very interesting
non-canonical DNA structures [39,99]. G-rich se-
quences, in which G-quadruplexes often appear, are
abundant in the genome, and are found e.g. in telomeric
regions [100], immonugloboluline switch regions [101]
or gene promoter regions [102]. G-quadruplex of O.
nova telomere is a well-studied [103,104] example of bi-
molecular, antiparallel quadruplex with the sequence d
(G4T4G4)2. A core structural element of G-quadruplexes
are planar G-quartets (also termed a G-tetrads) that
stack on top of each other. They are connected by loops
of variable length and composition whose variations lead
to a wide variety of topologies of G-quadruplexes.
In our previous work [32] we were able to match sev-

eral dinucleotides in O. nova G-quadruplex with distinct
types of conformers and new conformers 97, 113, and
114 identified in the present work further enhance this
structural annotation (Figure 3(a), (b) and (c)). Class 113
is a highly distorted BI-like conformation with ε/ζ in t/g+,
α+1/γ+1 switched into g+/t values and χ+1 in the syn re-
gion (~68°). Conformer 114 represents a BI-like conform-
ation with anti/syn arrangement of χ and χ+1 torsions,
high β (~260°), and unusual g- (~300°) value for γ+1 tor-
sion. Conformation 97 represents a BII conformation with
Table 3 Characteristics of the six new conformational classes

Class ID Description N

35 BI-to-A, β+1 in g+, α+1/γ+1 crank (high t/t), anti/low anti 14

97 BII-DNA, α+1/γ+1 crank(t/g+), anti/low anti 13

113 BI-DNA, ε/ζ in t/g+, α+1/γ+1 crank (g+/t), anti/syn 13

114 BI-DNA, α+1/γ+1 crank (g-/g-), high β+1, anti/syn 18

115 BI DNA, high ε, anti/low anti 22

117 BI-DNA, β+1 in g+, α+1/γ+1 crank (high t/t), anti/low anti 19

“Class ID” is a symbolic label of the class. “Description” is a short annotation of the
membership. Values of torsions represent the arithmetic means for the individual c
α+1/γ+1 switched into t/g+ values, and with χ+1 in low
anti region (~185°).
By analyzing crystal (1L1H [107], 1PH4, 1PH6, 1PH8

[108], 1JB7 [103], 2HBN [109], 3EUM [106], 3NYP
[110]) and NMR (156D [111], 230D [112], 1K4X [113],
2AKG [114]) structures we were able to construct a con-
sensus conformational map (Figure 3(d) and (e)) show-
ing the succession of conformers in the O. nova G-
quadruplex. From the studied pool of structures, four
(3EUM, 3NYP, 1L1H, and 3NZ7) represent a complex of
the G-quadruplex with a drug acridine, while the rest
are not complexed. Acridine binds to the quadruplex
within its T4 loop in chain A [107] influencing a con-
formation of the whole T4 loop. Thus, we have consid-
ered naked and acridine-complexed structures separately
in our analysis.
The consensus conformational map of the naked G-

quadruplex is shown in Figure 3(d), and that of the com-
plex with the acridine in Figure 3(e). Common to both
are conformations present in the chain B, and in the G-
tracts of the chain A. O. nova G-tracts exhibit a well-
known 5′-syn-anti-syn-3′ pattern [107] of guanine
glycosidic torsion angles manifested by alternating con-
formations 119–122–119 in the G1G2G3G4 sequence,
and conformations 119–114–119 in the G9G10G11G12
sequence. The T4 loop in acridine complexes shows
much higher conformational variability than in uncom-
plexed structures. This variability is manifested by the
presence of unusual conformations labeled qA, qB, qC,
and qD that are not homogenous enough to form dis-
tinct clusters but they do share several common struc-
tural characteristics. Conformation qA is typical by a
glycosidic angle in the low anti (~200°) region, β+1 tor-
sion in t (~200°) and α+1/γ+1 in t/g+ combination. Con-
former qB is similar to the cluster 19 (A-DNA with α+1/
γ+1 crank into the t/t values, Table 1) but with a second
sugar moiety in the canonical BI C2′-endo conform-
ation. A common feature of the qC conformer is a pres-
ence of α+1/γ+1 torsions switched into the g+/g+ values.
qD conformation can be, based on δ and δ+1 values, la-
beled as BI-like with α+1/γ+1 switched to the g-/t values,
β in g+, and with χ + 1 in the syn region.
found by clustering

δ ε ζ α + 1 β + 1 γ + 1 δ + 1 χ χ + 1

136 199 288 253 73 168 87 264 187

142 294 110 149 198 55 151 260 185

143 206 61 82 204 192 146 242 68

141 201 282 307 258 304 151 236 65

140 275 280 300 189 61 148 265 208

139 196 286 249 73 172 145 263 211

class. “N” is the number of suites (dinucleotides) with the given class
lasses. Torsions are defined in Figure 2.



Figure 3 Oxytricha nova guanine quadruplex. (a) A schematic diagram of a double-stranded (bimolecular) guanine quadruplex from Oxytricha
nova telomeric sequence (G4T4G4)2. A solid line represents a sugar-phosphate backbone. O. nova G-quadruplex has four G-quartets formed from
nucleotides in which syn and anti conformations of the glycosidic angle alternate along each strand [105]. Shaded rectangles indicate guanine
residues in syn conformation (typically χ ~ 60°-70°), clear rectangles indicate guanine residues in anti conformation (typically χ ~ 250°-260°). (b) A
crystal structure of a bimolecular O. nova G-quadruplex 1JPQ [104]. Overall topology is indicated by the orange ribbon. Bases are represented by
green sticks, potassium ions stabilizing the whole structure are shown as yellow spheres. (c) A crystal structure of a complex of O. nova G-
quadruplex with a drug acridine 3EUM [106]. Acridine affecting the conformation of a T4 loop in chain A is shown in blue. (d) Consensus
conformational map of the O. nova G-quadruplex. By convention, chains are numbered in the 5′-to-3′ direction. Conformational classes of
individual dinucleotide steps are indicated by red numbers, their size is proportional to the frequency of their occurrence in investigated
structures. A description of individual conformations is given in Tables 1 and 3. The T5T6 step adopts either a canonical BI conformation 54 if the
G4T5 step is also in a canonical BI conformation, or an A-to-B conformation 41 if the G4T5 step is in a conformation 32. (e) Consensus
conformational map of the O. nova G-quadruplex complexed with a drug acridine. Individual conformations shown as red numbers are
characterized in Tables 1 and 3.
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Described conformational assignment demonstrates that
O. nova G-quadruplexes are conformationally homogenous
structures that could be decomposed into the clustered
conformers some of which are unique to these structures
(conformations 97, 113, 114, and 119). The complexation
with the acridine molecule results in a higher conform-
ational variability of the T4 loop compared to the G-tracts.
Conformation 115
This class describes a conformation found exclusively in
Holliday (four-way) junctions. It was noticed previously
[32] as potentially existing, but only the larger data set in-
cluding the recent data lead to its identification. It can be
characterized as a BI-like conformer with unusually high ε
(~275°) and A-like χ+1 (~208°). This conformation is
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found in the sharp bend of the DNA strand between resi-
dues number 6 and number 7 (Figure 4).

Conformation 117
This class represents a BI-like conformation with both δ
and δ+1 torsions in the C2′-endo region but its torsions
α+1, β+1 and γ+1 acquire values (~250°, 73°, and 172°,
respectively) not typical for the BI conformer 54. In
addition, glycosidic torsion χ+1 of the second residue is
in A-like low anti region near 210°. This conformation
was almost exclusively observed in protein/DNA com-
plexes, about a half of them in complexes of
nucleosome-core particle. The DNA bending induced by
interactions between DNA and histone octamer has
been explained [32] by the periodic alteration of BI and
BII conformers with occasional insertion of conform-
ation 116 (Table 1). The new conformation 117 is its
rarer kin found only in some nucleosome structures lo-
cated outside the protein/DNA interface.

Conformation 35
Class 35 can be characterized as a transitional BI-to-A
conformation with the first residue in BI and the second
residue resembling an A-form whose character is dis-
turbed by unusual values of β+1 (g+, ~70°), α+1 (~250°),
and γ+1 torsions (t, ~168°). This conformation occurs in
diverse protein/DNA complexes, about a half in DNA
complexed with polymerases. Dinucleotides in this con-
formation are in direct contact with protein atoms via
the phosphate charged oxygen.

NMR structures
We clustered a set of 12,300 dinucleotides from 664
NMR structures released before 15 February 2013 (see
Figure 4 Structure of a four-way (Holliday) junction in an
inverted repeat sequence 1DCW [115]. The backbone between
residues A6 and C7 in chains B and D (shown in red) adopts an
unusual BI-like conformation 115 with high ε (~ 275°) and A-like χ+1
(~ 208°).
Additional file 1) utilizing k-NN procedure with k = 11
and vcrit = 0.001. We assigned 11,313 dinucleotides
(92%), and subsequently applied a new round of cluster-
ing to the remaining 987 points. However, clustering did
not reveal any new conformation that would be present
in NMR and not in X-ray data.
Across-the-database assignment of dinucleotide con-

formers for 816 X-ray and 664 NMR DNA structures ex-
hibit similar general features (Figure 5). The BI
conformer 54 is dominant in both data sets, and the BI
conformer 50, the BII conformers 86 and 96, and several
A-DNA conformers (8, 19, 32, 41) are also significantly
populated. Similar qualitative features of the assignment
of the local DNA backbone conformers demonstrate
that DNA in solution and in the crystal phase, which is
highly hydrated, show similar behavior. However similar
the overall features are, both populations also exhibit
significant differences. Perhaps the most noticeable is
the difference of the overall BI population (the con-
formers 50+54+116) that forms 65% in NMR, and only
47% in crystal structures. The BI conformers are more
populated in NMR than in crystal structures, striking is
especially a large population of the conformer 50 in
NMR (27%, compared to just 11% in crystals). Also the
fractions of some other conformers differ significantly.
NMR structures have more populated the mixed B-A
conformer 32, and crystal structures the canonical A-
form 8, the mixed A-B form 41, and the BII conformers
96 and 86. NMR structures have a slightly larger propor-
tion of unassigned dinucleotides than crystal structures,
8% versus 5.4%.
Reason for the above-mentioned differences between

NMR and crystal structures is not obvious, and we
propose just a few possible explanations. Protein/DNA
complexes form 65% of structures resolved by X-ray
crystallography, but this fraction is only 17% in NMR.
The higher number of protein/DNA complexes resolved
by X-ray crystallography could perhaps explain a larger
number of the A-form in crystal than in NMR structures
as the A-form is often induced by interactions with pro-
teins. A larger population of BI and a smaller population
of BII in NMR structures cannot be explained so easily.
Either of these forms has only limited sequence prefer-
ences, and there seem to be no obvious rationale
supporting a hypothesis that crystal packing favors the BII
over the BI conformation. A different hypothetical explan-
ation could lie in the process of interpretation of the
NMR experimental data. Their relative scarcity caused by
the low density of protons, and sometimes equivocal inter-
pretation of experiments such as indirect spin−spin cou-
plings (“J-couplings”) may cause uncertainties especially in
the assignment of torsions α and ζ of the phospho-
diester linkage [116]. The resulting DNA structure may
then be influenced by the refinement protocol in which



Figure 5 Comparison of a fraction of individual conformational classes (Tables 1 and 3) identified in structures resolved by X-ray (816
structures) and NMR techniques (664 structures).
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the experimental restrains are combined with force
fields in a computer simulation. Relatively low number
of the experimental restraints and imperfection of the
force fields, namely their incorrectly set torsion prefer-
ences, may perhaps favor BI over BII forms.

Conclusions
In the present work we investigated several supervised
machine-learning approaches (ridge regression (RR),
multi-layer perceptron (MLP) neural network, radial
basis function (RBF) neural network, and k nearest
neighbors (k-NN)) to develop a protocol for an auto-
matic classification of local DNA conformations. The
classifiers were trained and tested using the previously
published manually classified set of dinucleotides [32].
Various parameters of the machine learning methods
were set to their optimum values utilizing a 10-fold
cross-validation procedure. According to the results of
our testing, the best method is k-nearest neighbor. This
technique not only achieves high classification accuracy,
but also allows identifying conformers that cannot be
assigned to any of known classes. We subsequently in-
vestigated the unassigned conformers for the presence of
new clusters using a modified clustering method based
on the leader algorithm [89]. By the proposed machine
learning workflow (Figure 1) we successfully analyzed X-
ray and NMR structures of both naked and complexed
DNA released until 15 February 2013. In addition to 18
conformational classes compiled in [32] we identified 6
new classes in X-ray structures, and no additional new
classes in NMR data. We assigned four of these con-
formers to two structurally important DNA families:
guanine quadruplexes and Holliday (four-way) junctions.
The new clusters enhance structural annotation of O.
nova telomeric G-quadruplex [32] and we were able to
construct its consensus conformational map (Figure 3(d)
and (e)). Comparison of frequencies of individual con-
formers found in X-ray and NMR structures showed
that they have similar qualitative features so that DNA
in the crystal phase and in solution populate the same re-
gions of the conformational space. Observed differences
between populations of X-ray and NMR conformers can
be partially assigned to different composition of both
datasets, partially to the refinement protocol of NMR
structures that may favor BI over the BII form.
Additional files
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